infinitynetsolution
Infinity Net Solution

Course Curriculum for Data Science Training at Infinity Net Solution, Ludhiana

Module 1: Introduction to Data Science 

  • What is Data Science?
  • What is Machine Learning?
  • What is Deep Learning?
  • What is AI?
  • Data Analytics & it’s Types

Module 2: Introduction to Python  

  • What is Python?
  • Why Python?
  • Installing Python
  • Python IDEs
  • Jupyter Notebook Overview
  • Installing Jupyter Notebooks
  • Python 2.7 vs Python 3
  • Python Identifiers
  • Various Operators and Operators Precedence
  • Getting input from User, Comments, Multi line Comments.

Module 3:  Making Decisions and Loop Control

  • Simple if Statement, if-else Statement
  • if-elif Statement.
  • Introduction to while Loops.
  • Introduction to for Loops, Using continue and break

Module 4: Python Data Types: List, Tuples, And Dictionaries

  • Python Lists, Tuples, Dictionaries
  • Accessing Values
  • Basic Operations
  • Indexing, Slicing, and Matrixes
  • Built-in Functions & Methods
  • Exercises on List, Tuples And Dictionary

Module 5: Functions and Modules

  • Introduction To Functions – Why
  • Defining Functions
  • Calling Functions
  • Functions with Multiple Arguments.
  • Anonymous Functions – Lambda
  • Using Built-In Modules, User-Defined Modules, Module Namespaces,
  • Iterators And Generators

Module 6: File I/O and Exceptional Handling

  • Opening and Closing Files
  • open Function, file Object Attributes
  • Close() Method , Read, write, seek. Exception handling, the try-finally Clause
  • Raising an Exceptions, User-Defined Exceptions
  • Regular Expression- Search and Replace
  • Regular Expression Modifiers
  • Regular Expression patterns, re module

 Module 7: Numpy

  • NumPy – Introduction
  • NumPy – Environment
  • NumPy – Ndarray Object
  • NumPy – Data Types
  • NumPy – Array Attributes
  • NumPy – Array Creation Routines
  • NumPy – Array from Existing Data
  • Numpy – Array From Numerical Ranges
  • NumPy – Indexing & Slicing
  • NumPy – Advanced Indexing
  • NumPy – Broadcasting
  • NumPy – Iterating Over Array
  • NumPy – Array Manipulation
  • NumPy – Binary Operators
  • NumPy – String Functions
  • NumPy – Mathematical Functions
  • NumPy – Arithmetic Operations
  • NumPy – Statistical Functions,Sort, Search & Counting Functions
  • NumPy – Byte Swapping
  • NumPy – Copies & Views
  • NumPy – Matrix Library
  • NumPy – Linear Algebra

Module 8: Pandas

  • Pandas – Introduction
  • Pandas – Environment Setup
  • Pandas – Introduction to Data Structures
  • Pandas – Series
  • Pandas – DataFrame
  • Pandas – Panel
  • Pandas – Basic Functionality
  • Pandas – Descriptive Statistics
  • Pandas – Function Application
  • Pandas – Reindexing
  • Pandas – Iteration
  • Pandas – Sorting
  • Pandas – Working with Text Data
  • Pandas – Options & Customization
  • Pandas – Indexing & Selecting Data
  • Pandas – Statistical Functions
  • Pandas – Window Functions
  • Pandas – Aggregations
  • Pandas – Missing Data
  • Pandas – GroupBy
  • Pandas – Merging/Joining
  • Pandas – Concatenation
  • Pandas – Date Functionality
  • Pandas – Timedelta
  • Pandas – Categorical Data
  • Pandas – Visualization
  • Pandas – IO Tools
  • Pandas – Sparse Data
  • Pandas – Caveats & Gotchas
  • Pandas – Comparison with SQL

Module 9: Matplotlib

  • What Is Python Matplotlib?
  • Line Plot
  • Bar Graph
  • Histogram
  • Scatter Plot
  • Area Plot
  • Pie Chart
  • Working With Multiple Plots

Module 10: Importing data  

  • Reading CSV files
  • Saving in Python data
  • Loading Python data objects
  • Writing data to csv file

Module 11: Manipulating Data  

  • Selecting rows/observations
  • Rounding Number
  • Selecting columns/fields
  • Merging data
  • Data aggregation
  • Data munging techniques

Module 12: Statistics Basics  

  • Central Tendency
    • Mean
    • Median
    • Mode
    • Skewness
    • Normal Distribution
  • Probability Basics
    • What does mean by probability?
    • Types of Probability
    • ODDS Ratio?
  • Standard Deviation
    • Data deviation & distribution
    • Variance
  • Bias variance Trade off
    • Underfitting
    • Overfitting
  • Distance metrics
    • Euclidean Distance
    • Manhattan Distance
  • Outlier analysis
    • What is an Outlier?
    • Inter Quartile Range
    • Box & whisker plot
    • Upper Whisker
    • Lower Whisker
    • Scatter plot
    • Cook’s Distance
  • Missing Value treatments
    • What is a NA?
    • Central Imputation
    • KNN imputation
    • Dummification
  • Correlation
    • Pearson correlation
    • Positive & Negative correlation

Module 13: Error Metrics  

  • Classification
    • Confusion Matrix
    • Precision
    • Recall
    • Specificity
    • F1 Score
  • Regression
    • MSE
    • RMSE
    • MAPE